47 resultados para X-linked mental retardation

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Local translation of proteins in distal dendrites is thought to support synaptic structural plasticity. We have previously shown that metabotropic glutamate receptor (mGluR1) stimulation initiates a phosphorylation cascade, triggering rapid association of some mRNAs with translation machinery near synapses, and leading to protein synthesis. To determine the identity of these mRNAs, a cDNA library produced from distal nerve processes was used to screen synaptic polyribosome-associated mRNA. We identified mRNA for the fragile X mental retardation protein (FMRP) in these processes by use of synaptic subcellular fractions, termed synaptoneurosomes. We found that this mRNA associates with translational complexes in synaptoneurosomes within 1–2 min after mGluR1 stimulation of this preparation, and we observed increased expression of FMRP after mGluR1 stimulation. In addition, we found that FMRP is associated with polyribosomal complexes in these fractions. In vivo, we observed FMRP immunoreactivity in spines, dendrites, and somata of the developing rat brain, but not in nuclei or axons. We suggest that rapid production of FMRP near synapses in response to activation may be important for normal maturation of synaptic connections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absence of the fragile X mental retardation protein (FMRP), encoded by the FMR1 gene, is responsible for pathologic manifestations in the Fragile X Syndrome, the most frequent cause of inherited mental retardation. FMRP is an RNA-binding protein associated with polysomes as part of a messenger ribonucleoprotein (mRNP) complex. Although its function is poorly understood, various observations suggest a role in local protein translation at neuronal dendrites and in dendritic spine maturation. We present here the identification of CYFIP1/2 (Cytoplasmic FMRP Interacting Proteins) as FMRP interactors. CYFIP1/2 share 88% amino acid sequence identity and represent the two members in humans of a highly conserved protein family. Remarkably, whereas CYFIP2 also interacts with the FMRP-related proteins FXR1P/2P, CYFIP1 interacts exclusively with FMRP. FMRP–CYFIP interaction involves the domain of FMRP also mediating homo- and heteromerization, thus suggesting a competition between interaction among the FXR proteins and interaction with CYFIP. CYFIP1/2 are proteins of unknown function, but CYFIP1 has recently been shown to interact with the small GTPase Rac1, which is implicated in development and maintenance of neuronal structures. Consistent with FMRP and Rac1 localization in dendritic fine structures, CYFIP1/2 are present in synaptosomal extracts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder with impaired β-oxidation of very long chain fatty acids (VLCFAs) and reduced function of peroxisomal very long chain fatty acyl-CoA synthetase (VLCS) that leads to severe and progressive neurological disability. The X-ALD gene, identified by positional cloning, encodes a peroxisomal membrane protein (adrenoleukodystrophy protein; ALDP) that belongs to the ATP binding cassette transporter protein superfamily. Mutational analyses and functional studies of the X-ALD gene confirm that it and not VLCS is the gene responsible for X-ALD. Its role in the β-oxidation of VLCFAs and its effect on the function of VLCS are unclear. The complex pathology of X-ALD and the extreme variability of its clinical phenotypes are also unexplained. To facilitate understanding of X-ALD pathophysiology, we developed an X-ALD mouse model by gene targeting. The X-ALD mouse exhibits reduced β-oxidation of VLCFAs, resulting in significantly elevated levels of saturated VLCFAs in total lipids from all tissues measured and in cholesterol esters from adrenal glands. Lipid cleft inclusions were observed in adrenocortical cells of X-ALD mice under the electron microscope. No neurological involvement has been detected in X-ALD mice up to 6 months. We conclude that X-ALD mice exhibit biochemical defects equivalent to those found in human X-ALD and thus provide an experimental system for testing therapeutic intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that the squirrel monkey, marmoset, and other related New World (NW) monkeys possess three high-frequency alleles at the single X-linked photopigment locus, and that the spectral sensitivity peaks of these alleles are within those delimited by the human red and green pigment genes. The three alleles in the squirrel monkey and marmoset have been sequenced previously. In this study, the three alleles were found and sequenced in the saki monkey, capuchin, and tamarin. Although the capuchin and tamarin belong to the same family as the squirrel monkey and marmoset, the saki monkey belongs to a different family and is one of the species that is most divergent from the squirrel monkey and marmoset, suggesting the presence of the triallelic system in many NW monkeys. The nucleotide sequences of these alleles from the five species studied indicate that gene conversion occurs frequently and has partially or completely homogenized intronic and exonic regions of the alleles in each species, making it appear that a triallelic system arose independently in each of the five species studied. Nevertheless, a detailed analysis suggests that the triallelic system arose only once in the NW monkey lineage, from a middle wavelength (green) opsin gene, and that the amino acid differences at functionally critical sites among alleles have been maintained by natural selection in NW monkeys for >20 million years. Moreover, the two X-linked opsin genes of howler monkeys (a NW monkey genus) were evidently derived from the incorporation of a middle (green) and a long wavelength (red) allele into one chromosome; these two genes together with the (autosomal) blue opsin gene would immediately enable even a male monkey to have trichromatic vision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-linked lymphoproliferative syndrome (XLP) is an inherited immunodeficiency characterized by increased susceptibility to Epstein–Barr virus (EBV). In affected males, primary EBV infection leads to the uncontrolled proliferation of virus-containing B cells and reactive cytotoxic T cells, often culminating in the development of high-grade lymphoma. The XLP gene has been mapped to chromosome band Xq25 through linkage analysis and the discovery of patients harboring large constitutional genomic deletions. We describe here the presence of small deletions and intragenic mutations that specifically disrupt a gene named DSHP in 6 of 10 unrelated patients with XLP. This gene encodes a predicted protein of 128 amino acids composing a single SH2 domain with extensive homology to the SH2 domain of SHIP, an inositol polyphosphate 5-phosphatase that functions as a negative regulator of lymphocyte activation. DSHP is expressed in transformed T cell lines and is induced following in vitro activation of peripheral blood T lymphocytes. Expression of DSHP is restricted in vivo to lymphoid tissues, and RNA in situ hybridization demonstrates DSHP expression in activated T and B cell regions of reactive lymph nodes and in both T and B cell neoplasms. These observations confirm the identity of DSHP as the gene responsible for XLP, and suggest a role in the regulation of lymphocyte activation and proliferation. Induction of DSHP may sustain the immune response by interfering with SHIP-mediated inhibition of lymphocyte activation, while its inactivation in XLP patients results in a selective immunodeficiency to EBV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-linked hypohidrotic ectodermal dysplasia (XLHED) is a heritable disorder of the ED-1 gene disrupting the morphogenesis of ectodermal structures. The ED-1 gene product, ectodysplasin-A (EDA), is a tumor necrosis factor (TNF) family member and is synthesized as a membrane-anchored precursor protein with the TNF core motif located in the C-terminal domain. The stalk region of EDA contains the sequence -Arg-Val-Arg-Arg156-Asn-Lys-Arg159-, representing overlapping consensus cleavage sites (Arg-X-Lys/Arg-Arg↓) for the proprotein convertase furin. Missense mutations in four of the five basic residues within this sequence account for ≈20% of all known XLHED cases, with mutations occurring most frequently at Arg156, which is shared by the two consensus furin sites. These analyses suggest that cleavage at the furin site(s) in the stalk region is required for the EDA-mediated cell-to-cell signaling that regulates the morphogenesis of ectodermal appendages. Here we show that the 50-kDa EDA parent molecule is cleaved at -Arg156Asn-Lys-Arg159↓- to release the soluble C-terminal fragment containing the TNF core domain. This cleavage appears to be catalyzed by furin, as release of the TNF domain was blocked either by expression of the furin inhibitor α1-PDX or by expression of EDA in furin-deficient LoVo cells. These results demonstrate that mutation of a functional furin cleavage site in a developmental signaling molecule is a basis for human disease (XLHED) and raise the possibility that furin cleavage may regulate the ability of EDA to act as a juxtacrine or paracrine factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have introduced a targeted mutation in SH2D1A/DSHP/SAP, the gene responsible for the human genetic disorder X-linked lymphoproliferative disease (XLP). SLAM-associated protein (SAP)-deficient mice had normal lymphocyte development, but on challenge with infectious agents, recapitulated features of XLP. Infection of SAP− mice with lymphocyte choriomeningitis virus (LCMV) or Toxoplasma gondii was associated with increased T cell activation and IFN-γ production, as well as a reduction of Ig-secreting cells. Anti-CD3-stimulated splenocytes from uninfected SAP− mice produced increased IFN-γ and decreased IL-4, findings supported by decreased serum IgE levels in vivo. The Th1 skewing of these animals suggests that cytokine misregulation may contribute to phenotypes associated with mutation of SH2D1A/SAP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inhibitor of apoptosis (IAP) family of anti-apoptotic proteins regulate programmed cell death and/or apoptosis. One such protein, X-linked IAP (XIAP), inhibits the activity of the cell death proteases, caspase-3, -7, and -9. In this study, using constitutively active mutants of caspase-3, we found that XIAP promotes the degradation of active-form caspase-3, but not procaspase-3, in living cells. The XIAP mutants, which cannot interact with caspase-3, had little or no activity of promoting the degradation of caspase-3. RING finger mutants of XIAP also could not promote the degradation of caspase-3. A proteasome inhibitor suppressed the degradation of caspase-3 by XIAP, suggesting the involvement of a ubiquitin-proteasome pathway in the degradation. An in vitro ubiquitination assay revealed that XIAP acts as a ubiquitin-protein ligase for caspase-3. Caspase-3 was ubiquitinated in the presence of XIAP in living cells. Both the association of XIAP with caspase-3 and the RING finger domain of XIAP were essential for ubiquitination. Finally, the RING finger mutants of XIAP were less effective than wild-type XIAP at preventing apoptosis induced by overexpression of either active-form caspase-3 or Fas. These results demonstrate that the ubiquitin-protein ligase activity of XIAP promotes the degradation of caspase-3, which enhances its anti-apoptotic effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fragile X syndrome arises from blocked expression of the fragile X mental retardation protein (FMRP). Golgi-impregnated mature cerebral cortex from fragile X patients exhibits long, thin, tortuous postsynaptic spines resembling spines observed during normal early neocortical development. Here we describe dendritic spines in Golgi-impregnated cerebral cortex of transgenic fragile X gene (Fmr1) knockout mice that lack expression of the protein. Dendritic spines on apical dendrites of layer V pyramidal cells in occipital cortex of fragile X knockout mice were longer than those in wild-type mice and were often thin and tortuous, paralleling the human syndrome and suggesting that FMRP expression is required for normal spine morphological development. Moreover, spine density along the apical dendrite was greater in the knockout mice, which may reflect impaired developmental organizational processes of synapse stabilization and elimination or pruning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the ATRX gene on the human X chromosome cause X-linked α-thalassemia and mental retardation. XY patients with deletions or mutations in this gene display varying degrees of sex reversal, implicating ATRX in the development of the human testis. To explore further the role of ATRX in mammalian sex differentiation, the homologous gene was cloned and characterized in a marsupial. Surprisingly, active homologues of ATRX were detected on the marsupial Y as well as the X chromosome. The Y-borne copy (ATRY) displays testis-specific expression. This, as well as the sex reversal of ATRX patients, suggests that ATRY is involved in testis development in marsupials and may represent an ancestral testis-determining mechanism that predated the evolution of SRY as the primary mammalian male sex-determining gene. There is no evidence for a Y-borne ATRX homologue in mouse or human, implying that this gene has been lost in eutherians and its role supplanted by the evolution of SRY from SOX3 as the dominant determiner of male differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein synthesis occurs in neuronal dendrites, often near synapses. Polyribosomal aggregates often appear in dendritic spines, particularly during development. Polyribosomal aggregates in spines increase during experience-dependent synaptogenesis, e.g., in rats in a complex environment. Some protein synthesis appears to be regulated directly by synaptic activity. We use “synaptoneurosomes,” a preparation highly enriched in pinched-off, resealed presynaptic processes attached to resealed postsynaptic processes that retain normal functions of neurotransmitter release, receptor activation, and various postsynaptic responses including signaling pathways and protein synthesis. We have found that, when synaptoneurosomes are stimulated with glutamate or group I metabotropic glutamate receptor agonists such as dihydroxyphenylglycine, mRNA is rapidly taken up into polyribosomal aggregates, and labeled methionine is incorporated into protein. One of the proteins synthesized is FMRP, the protein that is reduced or absent in fragile X mental retardation syndrome. FMRP has three RNA-binding domains and reportedly binds to a significant number of mRNAs. We have found that dihydroxyphenylglycine-activated protein synthesis in synaptoneurosomes is dramatically reduced in a knockout mouse model of fragile X syndrome, which cannot produce full-length FMRP, suggesting that FMRP is involved in or required for this process. Studies of autopsy samples from patients with fragile X syndrome have indicated that dendritic spines may fail to assume a normal mature size and shape and that there are more spines per unit dendrite length in the patient samples. Similar findings on spine size and shape have come from studies of the knockout mouse. Study of the development of the somatosensory cortical region containing the barrel-like cell arrangements that process whisker information suggests that normal dendritic regression is impaired in the knockout mouse. This finding suggests that FMRP may be required for the normal processes of maturation and elimination to occur in cerebral cortical development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that the chloride channel gene Clc4 is X-linked and subject to X inactivation in Mus spretus, but that the same gene is autosomal in laboratory strains of mice. This exception to the conservation of linkage of the X chromosome in one of two interfertile mouse species was exploited to compare expression of Clc4 from the X chromosome to that from the autosome. Clc4 was found to be highly expressed in brain tissues of both mouse species. Quantitative analyses of species-specific expression of Clc4 in brain tissues from mice resulting from M. spretus × laboratory strain crosses, demonstrate that each autosomal locus has half the level of Clc4 expression as compared with the single active X-linked locus. In contrast expression of another chloride channel gene, Clc3, which is autosomal in both mouse species is equal between alleles in F1 animals. There is no evidence of imprinting of the Clc4 autosomal locus. These results are consistent with Ohno’s hypothesis of an evolutionary requirement for a higher expression of genes on the single active X chromosome to maintain balance with autosomal gene expression [Ohno, S. (1967) Sex Chromosomes and Sex-Linked Genes (Springer, Berlin)].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In females, most genes on the X chromosome are generally assumed to be transcriptionally silenced on the inactive X as a result of X inactivation. However, particularly in humans, an increasing number of genes are known to “escape” X inactivation and are expressed from both the active (Xa) and inactive (Xi) X chromosomes; such genes reflect different molecular and epigenetic responses to X inactivation and are candidates for phenotypes associated with X aneuploidy. To identify genes that escape X inactivation and to generate a first-generation X-inactivation profile of the X, we have evaluated the expression of 224 X-linked genes and expressed sequence tags by reverse-transcription–PCR analysis of a panel of multiple independent mouse/human somatic cell hybrids containing a normal human Xi but no Xa. The resulting survey yields an initial X-inactivation profile that is estimated to represent ≈10% of all X-linked transcripts. Of the 224 transcripts tested here, 34 (three of which are pseudoautosomal) were expressed in as many as nine Xi hybrids and thus appear to escape inactivation. The genes that escape inactivation are distributed nonrandomly along the X; 31 of 34 such transcripts map to Xp, implying that the two arms of the X are epigenetically and/or evolutionarily distinct and suggesting that genetic imbalance of Xp may be more severe clinically than imbalance of Xq. A complete X-inactivation profile will provide information relevant to clinical genetics and genetic counseling and should yield insight into the genomic and epigenetic organization of the X chromosome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human genome contains many repeated DNA sequences that vary in complexity of repeating unit from a single nucleotide to a whole gene. The repeat sequences can be widely dispersed or in simple tandem arrays. Arrays of up to 5 or 6 nt are known as simple tandem repeats, and these are widely dispersed and highly polymorphic. Members of one group of the simple tandem repeats, the trinucleotide repeats, can undergo an increase in copy number by a process of dynamic mutation. Dynamic mutations of the CCG trinucleotide give rise to one group of fragile sites on human chromosomes, the rare folate-sensitive group. One member of this group, the fragile X (FRAXA) is responsible for the most common familial form of mental retardation. Another member of the group FRAXE is responsible for a rarer mild form of mental retardation. Similar mutations of AGC repeats give rise to a number of neurological disorders. The expanded repeats are unstable between generations and somatically. The intergenerational instability gives rise to unusual patterns of inheritance--particularly anticipation, the increasing severity and/or earlier age of onset of the disorder in successive generations. Dynamic mutations have been found only in the human species, and possible reasons for this are considered. The mechanism of dynamic mutation is discussed, and a number of observations of simple tandem repeat mutation that could assist in understanding this phenomenon are commented on.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal hematopoietic stem cell disorder resulting from mutations in an X-linked gene, PIG-A, that encodes an enzyme required for the first step in the biosynthesis of glycosylphosphatidylinositol (GPI) anchors. PIG-A mutations result in absent or decreased cell surface expression of all GPI-anchored proteins. Although many of the clinical manifestations (e.g., hemolytic anemia) of the disease can be explained by a deficiency of GPI-anchored complement regulatory proteins such as CD59 and CD55, it is unclear why the PNH clone dominates hematopoiesis and why it is prone to evolve into acute leukemia. We found that PIG-A mutations confer a survival advantage by making cells relatively resistant to apoptotic death. When placed in serum-free medium, granulocytes and affected CD34+ (CD59−) cells from PNH patients survived longer than their normal counterparts. PNH cells were also relatively resistant to apoptosis induced by ionizing irradiation. Replacement of the normal PIG-A gene in PNH cell lines reversed the cellular resistance to apoptosis. Inhibited apoptosis resulting from PIG-A mutations appears to be the principle mechanism by which PNH cells maintain a growth advantage over normal progenitors and could play a role in the propensity of this disease to transform into more aggressive hematologic disorders. These data also suggest that GPI anchors are important in regulating apoptosis.